Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neural Eng ; 21(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38502956

RESUMO

Objective.Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated Platinum/Iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, it is important to note that the effectiveness of stimulation through TES relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures.Approach.We employed a hybrid computational modeling approach to analyze the impact of Injectrode system design parameters on charge delivery and neural response to stimulation. We constructed multiple finite element method models of DRG stimulation, followed by the implementation of multi-compartment models of DRG neurons. By calculating potential distribution during monopolar stimulation, we simulated neural responses using various parameters based on prior acute experiments. Additionally, we developed a canonical monopolar stimulation and full-scale model of bipolar bilateral L5 DRG stimulation, allowing us to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds.Main results.Our findings were in accordance with acute experimental measurements and indicate that the minimally invasive Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity.Significance.The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aßactivation from the undesired Aδ-fiber activation.


Assuntos
Gânglios Espinais , Neurônios , Humanos , Gânglios Espinais/fisiologia , Dor , Estimulação Elétrica , Simulação por Computador
2.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164555

RESUMO

Currently there are numerous methods to evaluate peripheral nerve stimulation interfaces in rats, with stimulation-evoked ankle torque being one of the most prominent. Commercial rat ankle torque measurement systems and custom one-off solutions have been published in the literature. However, commercial systems are proprietary and costly and do not allow for customization. One-off lab-built systems have required specialized machining expertise, and building plans have previously not been made easily accessible. Here, detailed building plans are provided for a low-cost, open-source, and basic ankle torque measurement system from which additional customization can be made. A hindlimb stabilization apparatus was developed to secure and stabilize a rat's hindlimb, while allowing for simultaneous ankle-isometric torque and lower limb muscle electromyography (EMG). The design was composed mainly of adjustable 3D-printed components to accommodate anatomical differences between rat hindlimbs. Additionally, construction and calibration procedures of the rat hindlimb stabilization apparatus were demonstrated in this study. In vivo torque measurements were reliably acquired and corresponded to increasing stimulation amplitudes. Furthermore, implanted leads used for intramuscular EMG recordings complemented torque measurements and were used as an additional functional measurement in evaluating the performance of a peripheral nerve stimulation interface. In conclusion, an open-source and noninvasive platform, made primarily with 3D-printed components, was constructed for reliable data acquisition of evoked motor activity in rat models. The purpose of this apparatus is to provide researchers a versatile system with adjustable components that can be tailored to meet user-defined experimental requirements when evaluating motor function of the rat hindlimbs.


Assuntos
Tornozelo , Músculo Esquelético , Ratos , Animais , Músculo Esquelético/fisiologia , Estimulação Elétrica/métodos , Extremidade Inferior , Membro Posterior/inervação , Membro Posterior/fisiologia , Eletromiografia/métodos , Impressão Tridimensional
3.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790562

RESUMO

Objective: Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated platinum/iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, effectiveness of stimulation relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures. Approach: We employed a hybrid computational modeling approach to analyze the impact of the Injectrode system design parameters on charge delivery and the neural response to stimulation. We constructed multiple finite element method models of DRG stimulation and multi-compartment models of DRG neurons. We simulated the neural responses using parameters based on prior acute preclinical experiments. Additionally, we developed multiple human-scale computational models of DRG stimulation to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds. Main results: Our findings were in accordance with acute experimental measurements and indicated that the Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity. Significance: The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aß activation from the undesired Aδ-fiber activation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37680669

RESUMO

In recent years, tractography based on diffusion magnetic resonance imaging (dMRI) has become a popular tool for studying microstructural changes resulting from brain diseases like Parkinson's Disease (PD). Quantitative anisotropy (QA) is a parameter that is used in deterministic fiber tracking as a measure of connection between brain regions. It remains unclear, however, if microstructural changes caused by lesioning the median forebrain bundle (MFB) to create a Parkinsonian rat model can be resolved using tractography based on ex-vivo diffusion MRI. This study aims to fill this gap and enable future mechanistic research on structural changes of the whole brain network rodent models of PD. Specifically, it evaluated the ability of correlational tractography to detect structural changes in the MFB of 6-hydroxydopamine (6-OHDA) lesioned rats. The findings reveal that correlational tractography can detect structural changes in lesioned MFB and differentiate between the 6-OHDA and control groups. Imaging results are supported by behavioral and histological evidence demonstrating that 6-OHDA lesioned rats were indeed Parkinsonian. The results suggest that QA and correlational tractography is appropriate to examine local structural changes in rodent models of neurodegenerative disease. More broadly, we expect that similar techniques may provide insight on how disease alters structure throughout the brain, and as a tool to optimize therapeutic interventions.

5.
J Neural Eng ; 20(4)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276858

RESUMO

Objective. Vagus nerve stimulation (VNS), which involves a surgical procedure to place electrodes directly on the vagus nerve (VN), is approved clinically for the treatment of epilepsy, depression, and to facilitate rehabilitation in stroke. VNS at surgically implanted electrodes is often limited by activation of motor nerve fibers near and within the VN that cause neck muscle contraction. In this study we investigated endovascular VNS that may allow activation of the VN at locations where the motor nerve fibers are not localized.Approach. We used endovascular electrodes within the nearby internal jugular vein (IJV) to electrically stimulate the VN while recording VN compound action potentials (CAPs) and neck muscle motor evoked potentials (MEPs) in an acute intraoperative swine experiment.Main Results. We show that the stimulation electrode position within the IJV is critical for efficient activation of the VN. We also demonstrate use of fluoroscopy (cone beam CT mode) and ultrasound to determine the position of the endovascular stimulation electrode with respect to the VN and IJV. At the most effective endovascular stimulation locations tested, thresholds for VN activation were several times higher than direct stimulation of the nerve using a cuff electrode; however, this work demonstrates the feasibility of VNS with endovascular electrodes and provides tools to optimize endovascular electrode positions for VNS.Significance. This work lays the foundation to develop endovascular VNS strategies to stimulate at VN locations that would be otherwise too invasive and at VN locations where structures such as motor nerve fibers do not exist.


Assuntos
Estimulação do Nervo Vago , Animais , Suínos , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Eletrodos Implantados , Potenciais Evocados/fisiologia , Fibras Nervosas
6.
Front Neurosci ; 17: 1169187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332862

RESUMO

Introduction: MicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts. Methods: Here, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve. Results: The U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles. Discussion: This network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies.

7.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118841

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

8.
J Neural Eng ; 20(1)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36649655

RESUMO

Electrical stimulation of the cervical vagus nerve using implanted electrodes (VNS) is FDA-approved for the treatment of drug-resistant epilepsy, treatment-resistant depression, and most recently, chronic ischemic stroke rehabilitation. However, VNS is critically limited by the unwanted stimulation of nearby neck muscles-a result of non-specific stimulation activating motor nerve fibers within the vagus. Prior studies suggested that precise placement of small epineural electrodes can modify VNS therapeutic effects, such as cardiac responses. However, it remains unclear if placement can alter the balance between intended effect and limiting side effect. We used an FDA investigational device exemption approved six-contact epineural cuff to deliver VNS in pigs and quantified how epineural electrode location impacts on- and off-target VNS activation. Detailed post-mortem histology was conducted to understand how the underlying neuroanatomy impacts observed functional responses. Here we report the discovery and characterization of clear neuroanatomy-dependent differences in threshold and saturation for responses related to both effect (change in heart rate) and side effect (neck muscle contractions). The histological and electrophysiological data were used to develop and validate subject-specific computation models of VNS, creating a well-grounded quantitative framework to optimize electrode location-specific activation of nerve fibers governing intended effect versus unwanted side effect.


Assuntos
Estimulação do Nervo Vago , Animais , Suínos , Nervo Vago/fisiologia , Coração/fisiologia , Frequência Cardíaca/fisiologia , Eletrodos Implantados
9.
Sci Rep ; 12(1): 21798, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526728

RESUMO

Noninvasive electronic bone growth stimulators (EBGSs) have been in clinical use for decades. However, systematic reviews show inconsistent and limited clinical efficacy. Further, noninvasive EBGS studies in small animals, where the stimulation electrode is closer to the fracture site, have shown promising efficacy, which has not translated to large animals or humans. We propose that this is due to the weaker electric fields reaching the fracture site when scaling from small animals to large animals and humans. To address this gap, we measured the electric field strength reaching the bone during noninvasive EBGS therapy in human and sheep cadaver legs and in finite element method (FEM) models of human and sheep legs. During application of 1100 V/m with an external EBGS, only 21 V/m reached the fracture site in humans. Substantially weaker electric fields reached the fracture site during the later stages of healing and at increased bone depths. To augment the electric field strength reaching the fracture site during noninvasive EBGS therapy, we introduced the Injectrode, an injectable electrode that spans the distance between the bone and subcutaneous tissue. Our study lays the groundwork to improve the efficacy of noninvasive EBGSs by increasing the electric field strength reaching the fracture site.


Assuntos
Terapia por Estimulação Elétrica , Fraturas Ósseas , Humanos , Animais , Ovinos , Fraturas Ósseas/terapia , Osso e Ossos , Osteogênese , Modelos Animais
10.
J Neural Eng ; 19(5)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36174538

RESUMO

Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.


Assuntos
Epilepsia , Estimulação do Nervo Vago , Humanos , Estudos Transversais , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos , Cadáver
11.
Front Bioeng Biotechnol ; 10: 879187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721861

RESUMO

Orthopedic fractures have a significant impact on patients in the form of economic loss and functional impairment. Beyond the standard methods of reduction and fixation, one adjunct that has been explored since the late 1970s is electrical stimulation. Despite robust evidence for efficacy in the preclinical arena, human trials have mixed results, and this technology is not widely accepted. The purpose of this review is to examine the body of literature supporting electrical stimulation for the purpose of fracture healing in humans with an emphasis on device specifications and stimulation protocols and delineate a minimum reporting checklist for future studies of this type. We have isolated 12 studies that pertain to the administration of electrical stimulation for the purpose of augmenting fracture healing in humans. Of these, one was a direct current electrical stimulation study. Six studies utilized pulsed electromagnetic field therapy and five used capacitive coupling. When examining these studies, the device specifications were heterogenous and often incomplete in what they reported, which rendered studies unrepeatable. The stimulation protocols also varied greatly study to study. To demonstrate efficacy of electrical stimulation for fractures, the authors recommend isolating a fracture type that is prone to nonunion to maximize the electrical stimulation effect, a homogenous study population so as to not dilute the effect of electrical stimulation, and increasing scientific rigor in the form of pre-registration, blinding, and sham controls. Finally, we introduce the critical components of minimum device specification reporting for repeatability of studies of this type.

12.
J Neural Eng ; 19(2)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35263736

RESUMO

Objective. Neural prosthetics often use intracortical microstimulation (ICMS) for sensory restoration. To restore natural and functional feedback, we must first understand how stimulation parameters influence the recruitment of neural populations. ICMS waveform asymmetry modulates the spatial activation of neurons around an electrode at 10 Hz; however, it is unclear how asymmetry may differentially modulate population activity at frequencies typically employed in the clinic (e.g. 100 Hz). We hypothesized that stimulation waveform asymmetry would differentially modulate preferential activation of certain neural populations, and the differential population activity would be frequency-dependent.Approach. We quantified how asymmetric stimulation waveforms delivered at 10 or 100 Hz for 30 s modulated spatiotemporal activity of cortical layer II/III pyramidal neurons usingin vivotwo-photon and mesoscale calcium imaging in anesthetized mice. Asymmetry is defined in terms of the ratio of the duration of the leading phase to the duration of the return phase of charge-balanced cathodal- and anodal-first waveforms (i.e. longer leading phase relative to return has larger asymmetry).Main results. Neurons within 40-60µm of the electrode display stable stimulation-induced activity indicative of direct activation, which was independent of waveform asymmetry. The stability of 72% of activated neurons and the preferential activation of 20%-90% of neurons depended on waveform asymmetry. Additionally, this asymmetry-dependent activation of different neural populations was associated with differential progression of population activity. Specifically, neural activity tended to increase over time during 10 Hz stimulation for some waveforms, whereas activity remained at the same level throughout stimulation for other waveforms. During 100 Hz stimulation, neural activity decreased over time for all waveforms, but decreased more for the waveforms that resulted in increasing neural activity during 10 Hz stimulation.Significance.These data demonstrate that at frequencies commonly used for sensory restoration, stimulation waveform alters the pattern of activation of different but overlapping populations of excitatory neurons. The impact of these waveform specific responses on the activation of different subtypes of neurons as well as sensory perception merits further investigation.


Assuntos
Neurônios , Neurópilo , Animais , Estimulação Elétrica/métodos , Camundongos , Microeletrodos , Neurônios/fisiologia , Células Piramidais/fisiologia
13.
Front Bioeng Biotechnol ; 10: 793945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237571

RESUMO

Since the piezoelectric quality of bone was discovered in 1957, scientists have applied exogenous electrical stimulation for the purpose of healing. Despite the efforts made over the past 60 years, electronic bone growth stimulators are not in common clinical use. Reasons for this include high cost and lack of faith in the efficacy of bone growth stimulators on behalf of clinicians. The purpose of this narrative review is to examine the preclinical body of literature supporting electrical stimulation and its effect on bone properties and elucidate gaps in clinical translation with an emphasis on device specifications and mechanisms of action. When examining these studies, trends become apparent. In vitro and small animal studies are successful in inducing osteogenesis with all electrical stimulation modalities: direct current, pulsed electromagnetic field, and capacitive coupling. However, large animal studies are largely unsuccessful with the non-invasive modalities. This may be due to issues of scale and thickness of tissue planes with varying levels of resistivity, not present in small animal models. Additionally, it is difficult to draw conclusions from studies due to the varying units of stimulation strength and stimulation protocols and incomplete device specification reporting. To better understand the disconnect between the large and small animal model, the authors recommend increasing scientific rigor for these studies and reporting a novel minimum set of parameters depending on the stimulation modality.

14.
Front Neurosci ; 15: 676680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899151

RESUMO

Background: Placement of the clinical vagus nerve stimulating cuff is a standard surgical procedure based on anatomical landmarks, with limited patient specificity in terms of fascicular organization or vagal anatomy. As such, the therapeutic effects are generally limited by unwanted side effects of neck muscle contractions, demonstrated by previous studies to result from stimulation of (1) motor fibers near the cuff in the superior laryngeal and (2) motor fibers within the cuff projecting to the recurrent laryngeal. Objective: Conventional non-invasive ultrasound, where the transducer is placed on the surface of the skin, has been previously used to visualize the vagus with respect to other landmarks such as the carotid and internal jugular vein. However, it lacks sufficient resolution to provide details about the vagus fascicular organization, or detail about smaller neural structures such as the recurrent and superior laryngeal branch responsible for therapy limiting side effects. Here, we characterize the use of ultrasound with the transducer placed in the surgical pocket to improve resolution without adding significant additional risk to the surgical procedure in the pig model. Methods: Ultrasound images were obtained from a point of known functional organization at the nodose ganglia to the point of placement of stimulating electrodes within the surgical window. Naïve volunteers with minimal training were then asked to use these ultrasound videos to trace afferent groupings of fascicles from the nodose to their location within the surgical window where a stimulating cuff would normally be placed. Volunteers were asked to select a location for epineural electrode placement away from the fascicles containing efferent motor nerves responsible for therapy limiting side effects. 2-D and 3-D reconstructions of the ultrasound were directly compared to post-mortem histology in the same animals. Results: High-resolution ultrasound from the surgical pocket enabled 2-D and 3-D reconstruction of the cervical vagus and surrounding structures that accurately depicted the functional vagotopy of the pig vagus nerve as confirmed via histology. Although resolution was not sufficient to match specific fascicles between ultrasound and histology 1 to 1, it was sufficient to trace fascicle groupings from a point of known functional organization at the nodose ganglia to their locations within the surgical window at stimulating electrode placement. Naïve volunteers were able place an electrode proximal to the sensory afferent grouping of fascicles and away from the motor nerve efferent grouping of fascicles in each subject (n = 3). Conclusion: The surgical pocket itself provides a unique opportunity to obtain higher resolution ultrasound images of neural targets responsible for intended therapeutic effect and limiting off-target effects. We demonstrate the increase in resolution is sufficient to aid patient-specific electrode placement to optimize outcomes. This simple technique could be easily adopted for multiple neuromodulation targets to better understand how patient specific anatomy impacts functional outcomes.

15.
Int IEEE EMBS Conf Neural Eng ; 2021: 609-612, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34630868

RESUMO

Chronic pain affects millions of people in the United States and pharmacological treatments have been ineffective. Dorsal root ganglion (DRG) stimulation is a neuromodulation method that delivers electrical stimulation to the DRG to relieve pain. DRG electrodes are rigid and cylindrical. The implantation of DRG electrodes requires a technically-challenging surgery that involves steering electrodes laterally towards the DRG. The Injectrode is an injectable conductive polymer that cures in place and is capable of delivering electrical current to stimulate neural tissue. We used the Injectrode to stimulate the L6 and L7 DRG in cats, measuring neural responses evoked in the sciatic, tibial, and common peroneal nerves to measure the thresholds for activating fibers. A cylindrical stainless-steel electrode was used for comparison. Thresholds were 38% higher with the Injectrode versus stainless-steel, likely owing to its larger contact surface area with the DRG. Both Aα and Aß sensory fibers were activated using DRG stimulation. The Injectrode has the potential to offer a new and simple method for DRG stimulation that can potentially offer more complete coverage of the DRG.

16.
J Neural Eng ; 18(5)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34650008

RESUMO

Objective. The goal of this work was to compare afferent fiber recruitment by dorsal root ganglion (DRG) stimulation using an injectable polymer electrode (Injectrode®) and a more traditional cylindrical metal electrode.Approach. We exposed the L6 and L7 DRG in four cats via a partial laminectomy or burr hole. We stimulated the DRG using an Injectrode or a stainless steel (SS) electrode using biphasic pulses at three different pulse widths (80, 150, 300µs) and pulse amplitudes spanning the range used for clinical DRG stimulation. We recorded antidromic evoked compound action potentials (ECAPs) in the sciatic, tibial, and common peroneal nerves using nerve cuffs. We calculated the conduction velocity of the ECAPs and determined the charge-thresholds and recruitment rates for ECAPs from Aα, Aß, and Aδfibers. We also performed electrochemical impedance spectroscopy measurements for both electrode types.Main results. The ECAP thresholds for the Injectrode did not differ from the SS electrode across all primary afferents (Aα, Aß, Aδ) and pulse widths; charge-thresholds increased with wider pulse widths. Thresholds for generating ECAPs from Aßfibers were 100.0 ± 32.3 nC using the SS electrode, and 90.9 ± 42.9 nC using the Injectrode. The ECAP thresholds from the Injectrode were consistent over several hours of stimulation. The rate of recruitment was similar between the Injectrodes and SS electrode and decreased with wider pulse widths.Significance. The Injectrode can effectively excite primary afferents when used for DRG stimulation within the range of parameters used for clinical DRG stimulation. The Injectrode can be implanted through minimally invasive techniques while achieving similar neural activation to conventional electrodes, making it an excellent candidate for future DRG stimulation and neuroprosthetic applications.


Assuntos
Gânglios Espinais , Nervo Fibular , Potenciais de Ação , Estimulação Elétrica/métodos , Eletrodos , Potenciais Evocados , Gânglios Espinais/fisiologia
17.
PLoS One ; 16(7): e0254594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310610

RESUMO

Modern techniques for estimating basal levels of electroactive neurotransmitters rely on the measurement of oxidative charges. This requires time integration of oxidation currents at certain intervals. Unfortunately, the selection of integration intervals relies on ad-hoc visual identification of peaks on the oxidation currents, which introduces sources of error and precludes the development of automated procedures necessary for analysis and quantification of neurotransmitter levels in large data sets. In an effort to improve charge quantification techniques, here we present novel methods for automatic selection of integration boundaries. Our results show that these methods allow quantification of oxidation reactions both in vitro and in vivo and of multiple analytes in vitro.


Assuntos
Dopamina/isolamento & purificação , Técnicas Eletroquímicas , Neurotransmissores/isolamento & purificação , Serotonina/isolamento & purificação , Adenosina/metabolismo , Animais , Dopamina/metabolismo , Epinefrina/metabolismo , Humanos , Microeletrodos , Neuroquímica , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Oxirredução , Ratos , Serotonina/metabolismo
19.
Front Neurosci ; 15: 664740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994937

RESUMO

Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.

20.
Micromachines (Basel) ; 12(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530395

RESUMO

Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...